O.P.Code: 19CS0522

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year II Semester Supplementary Examinations May/June-2024 ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

₩ :			(Common to CSE & CSIT)	o,			
111	ne	: 3	o nours		Max. Marks: 60		
			(Answer all Five Units $5 \times 12 = 60$ Marks)				
	1		UNIT-I				
	1	a		CO ₁	L3	6M	
		b	Explain Foundations of Artificial Intelligence.	CO1	L 4	6M	
	_		OR				
	2	a	and various respectives of environment.	CO1	L2	6M	
		b	Explain in detail about structure of Intelligent agents.	CO ₁	L3	6M	
			UNIT-II				
	3	a	Identify and explain in detail about optimization problems.	CO2	L4	6M	
		b	Demonstrate the process of simulated annealing with example.	CO ₂	L2	6M	
			OR			0171	
4	1	a	Explain A* Algorithm finds a shortest distance between Source and	CO2	L3	6M	
			Goal state.			01,1	
		b	Describe the process of simulated annealing with example.	CO ₂	L2	6M	
			UNIT-III				
5	,	a	Explain the various types of Machine Learning techniques.	CO3	L2	6M	
		b	List out an applications of Machine Learning.	CO3	L4	6M	
			OR		134	OIVI	
6		a	Describe classification techniques in supervised learning with an	CO ₃	L2	6M	
			example.			0111	
		b	Compare Univariate and Multivariate Decision Trees.	CO3	L3	6M	
			UNIT-IV			OIVI	
7		a	Analyze the maximization algorithm with simple example.	CO4	L4	6M	
	1	b	List out the various unsupervised learning techniques.	CO4	L2	6M	
			OR	001		UNI	
8	2	a .	How can we make k-means robust to outliers? Explain	CO4	L3	6M	
	l)	Illustrate in detail about multidimensional scaling.	CO4	L2	6M	
			UNIT-V			UIVI	
9	a	1]	Illustrate Condensed Nearest Neighbor in reinforcement learning.	CO5	T 1	CNA	
	t)]	Explain Generalization process in Temporal difference Learning.	CO5	L4	6M	
			OR	CO3	L3	6M	
10	a	I	List and explain in detail about elements of reinforcement learning.	CO5	L3	6M	
	b	5	State and explain non parametric density estimation.	CO5	L3	6M	
			*** END ***	CO3	1,4	6M	
			-				